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Optical parameters (properties) of tissue-mimicking phantoms are determined through nonin-
vasive optical imaging. Objective of this study is to decompose obtained di®use re°ectance into
these optical properties such as absorption and scattering coe±cients. To do so, transmission
spectroscopy is ¯rstly used to measure the coe±cients via an experimental setup. Next, the
optical properties of each characterized phantom are input for Monte Carlo (MC) simulations to
get di®use re°ectance. Also, a surface image for each single phantom with its known optical
properties is obliquely captured due to re°ectance-based geometrical setup using CMOS camera
that is positioned at 5� angle to the phantoms. For the illumination of light, a laser light source at
633 nm wavelength is preferred, because optical properties of di®erent components in a biological
tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30
di®erent mixture samples adding clinoleic intravenous lipid emulsion (CILE) and evans blue (EB)
dye into a distilled water. Finally, all obtained di®use re°ectance values are used to estimate the
optical coe±cients by arti¯cial neural networks (ANNs) in inverse modeling. For a biological
tissue it is found that the simulated and measured values in our results are in good agreement.

Keywords: Optical properties; di®use re°ectance; spectroscopy; Monte Carlo simulation; arti¯cial
neural networks.

1. Introduction

Determination of optical properties of a biological
tissue is quite important in medical diagnosis and
treatment. To characterize tissue conditions for the

purposes of diagnosis of diseases, such as (pre)

cancerous circumstances, or for monitoring response

to treatment, noninvasive di®use re°ectance imaging

approach plays a key role. This is because optical
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properties of a tissue may reveal information con-
cerning the morphological and biochemical compo-
sition of that tissue.1

Therefore, the calculation of tissue optical para-
meters through noninvasive imaging should be re-
liable when repeatedly performing measurements.1

Tissues can be characterized by their optical prop-
erties, which are de¯ned by absorption coe±cient (�aÞ,
the scattering coe±cient (�sÞ, anisotropy factor ðgÞ
and reduced scattering coe±cient [�

0
s ¼ �sð1� gÞ].1,2

Since Boltzmann based radiative transfer equations
(RTE) are nontrivial, di®usion approximation is more
suitable than RTE equations.3 However, due to the
fact that the solution of di®usion equation is still too
complex to calculate di®use re°ectance depending on
absorption and scattering coe±cients, another way to
obtain di®use re°ectance is Monte Carlo (MC) ap-
proach in forward modeling. Monte Carlo simulations
are more e±cient than the classical di®usion equation.
Statistical modeling based MC simulations rely on the
calculation of an expected value of all random samples
for multi-photons in a biological tissue with iterative
approach.4 In this study, both experimental and sim-
ulative approaches are considered for getting di®use
re°ectance parameter depending on source-detector
distance in millimeter.

In experiments, all measurements were taken into
account in terms of the use of noninvasive di®use
optical two-dimensional (2D) imaging and of spec-
trometer for optical characterization of a turbid me-
dium. For doing this, transmission spectroscopy was
¯rstly used for an experimental setup to measure the
coe±cients. Then, in re°ectance-based geometrical
setup, CMOS camera was positioned at 5� angle to
the phantoms for oblique image capturing. Thereby,
images were taken from the phantoms that were
previously characterized via the transmission-based
spectroscopic measurements. For the illumination of
light, a laser source at 633 nm wavelength is pre-
ferred, because optical properties of tissue chromo-
phores on that wavelength are nonoverlapped.5With
a di®erent approach, we can suggest that CMOS
camera-based measurements can be an alternative
way for getting optical parameters. Therefore, a
measuring instrument can be miniaturized using 2D
arrays. An algorithmic way on how to obtain di®use
re°ectance (2D arrays) through images will be given
in our materials and methods in Sec. 3.

In our study, arti¯cial neural networks (ANNs)
were also used to obtain optical parameters such
that absorption and scattering coe±cients were

estimated using di®use re°ectance.2 Also MC
simulations were performed for the sake of possibly
obtaining simulated di®use re°ectance, to contrib-
ute to the ANN as input parameters. Moreover,
captured images from prepared phantoms were
considered for ANN structure. In terms of building a
good prediction models for ANN, we elaborated on
stabilizing the power of laser light and then cap-
turing surface images that have high spatial reso-
lution. The Canon EOS 40D CMOS camera we used
during imaging to acquire high spatially resolved
images has the 3888� 2592 pixels and a metric
distance between two pixels of 5.7�m. In addition,
in MC simulation that we coded for a single layered
skin-tissue to model transporting multi-photons,6 it
involves no physical approximations but produces
estimates of the re°ectance through statistical
modeling. At this point, our C programming lan-
guage code named \distance based re°ectance" was
¯ne modeled in terms of practicality, reliability and
suitability to performMC simulations. Also, in terms
of well-modeled ANN structure, optimum algorithm
such as Levenberg–Marquardt and a number of hid-
den layers were selected.

2. Theoretical Background

As it is known that a tissue consists of four main
layers that are, from top to deep; stratum corneum,
epidermis, dermis and subcutaneous. Each layer has
a thickness that can be changeable from person to
person.7 The thickness of an each layer is generally
¯xed for the sake of simplicity in a simulative ap-
proach. As a real life scenario, most biological tis-
sues are characterized by their optical properties
such as absorption and scattering coe±cients.8

Absorption coe±cient mainly means that the
probability of photon being absorbed per unit path
length in a medium. Likewise, scattering coe±cient
de¯nes that the probability of photon being scat-
tered per unit path length in a medium. At this
point, if a medium has strong scatters, that medium
is referred to as scattering media or turbid media.1

2.1. Forward modeling

Photon migration or light propagation in biological
tissue can be analytically modeled using RTE as
given in Eq. (1) or numerically modeled with MC
simulations. Because the RTE is di±cult to solve, it
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is often approximated to a di®usion equation, which
provides solutions that are more computationally
e±cient but less accurate than those provided by
the MC method.1

@Lðr; ŝ; tÞ
@t

¼ �ŝ � rLðr; ŝ; tÞ � �tLðr; ŝ; tÞ

þ �s

Z
Lðr; ŝ; tÞ � P ðŝ 0 � ŝÞd� 0

þ Sðr; ŝ; tÞ; ð1Þ
where Lðr; ŝ; tÞ is radiance, r: location, ŝ: direction
vector and t: time. �t is total attenuation coe±cient.
The product P ðŝ 0 � ŝÞd� 0 is scattering phase func-
tion and represents the probability of light with
propagation direction ŝ 0 being scattered into d� 0 ,
which is a unit solid angle, around direction ŝ. Also,
Sðr; ŝ; tÞ is a light source. As it is seen in Eq. (1), it
contains more independent and unknown variables
and is analytically di±cult to solve. Also the equa-
tion may not produce desired values as accurate as
possible.9 Instead, in terms of modeling photon
propagation in a medium, there are two e®ective
ways to get easier and more accurate resultant
parameters that can di®use re°ectance and trans-
mittance. At this point, di®use term is based on a
banana model when light or a photon travels in a
medium and back propagates to the top of same
surface regarding source-detector distance. There-
by, in di®use regime, MC simulation can be used to
obtain an expected value of all random variables
that are generated by computer for multi-photons
with iterative approach. This expected value can be
considered as di®use re°ectance that they depend
on how source-detector pair is positioned. In MC
modeling, we have preconditioned for the modeling
of single layered tissue that was assumed to be a
semi-in¯nite highly scattering medium. Although
the main disadvantage of iterative MC technique is
time consuming, graphics processing unit (GPU)
can be used to reduce long execution time of the
simulations.10,11 Yong et al.10 and Cserkaszky11

used GPU-based simulations to produce fast results
in their studies.

2.2. Inverse modeling

Arti¯cial neural networks based on statistical
learning such as supervised and unsupervised
learning. Basically, unsupervised learning provides
how a network structure can learn to represent

particular input patterns in a way that re°ects the
statistical structure of the overall collection of input
patterns. On the other hand, supervised learning
consists of presenting an input pattern and a desired
pattern to the output layer and updating network
parameters (e.g., weights) in order to produce ac-
tual output more similar to the desired one.18 For
example, backpropagation is the most widely used
algorithm for supervised learning with multi-lay-
ered feed forward networks23 and its basic approach
is based on a chain rule to compute the e®ect of
weights in the network with respect to an error
(cost) function E;

@E

@wij

¼ @E

@si

@si
@neti

@neti
@wij

; ð2Þ

where wij is the weight from neuron j to neuron i, si
is the output and neti is the weighted sum of the
inputs of neuron i. The aim of using partial deriv-
ative for each weight in Eq. (2) is to minimize cost
function that is achieved by performing a gradient
descent;

wijðtþ 1Þ ¼ wijðtÞ � �
@E

@wij

ðtÞ; ð3Þ

where � is the learning rate, which scales the de-
rivative and it has an important e®ect on time
needed until convergence is reached for updating
weights in Eq. (3). In our study, backpropagation
algorithm was used to estimate the optical coe±-
cients using di®use re°ectance values in a way of
inverse modeling.

3. Materials and Methods

3.1. Monte Carlo simulation

Statistical modeling based MC approach relies on
the calculation of an expected value of randomly
generated samples (or numbers) between 0 and 1. In
the ¯eld of biomedical optics, many di®erent MC
simulations are performed for the migration of
multi-photons in a biological tissue with iterative
approach.4 Because of the fact that there are no
international standards to model a complex skin-
tissue and no exact analytical solution exists for the
problem of light propagation in turbid media,5 we
coded a MC simulation using C programming lan-
guage in terms of practicality and reliability. All
simulations were based on a °owchart that was
taken from Ref. 7 as shown in Fig. 1. The main aim
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of the simulation is to produce a di®use re°ectance
identifying some boundary conditions and required
inputs. We considered a semi-in¯nite scattering
medium that is only de¯ned by top and bottom
surface. The left and right boundaries of a medium
are not taken into account for a semi-in¯nite
condition. Also, in our model, photons were posi-
tioned at the top of the medium and required
input parameters were handled. The parameters
are absorption coe±cient (�aÞmm�1, scattering
coe±cient (�sÞmm�1, anisotropy factor ðgÞ and
the ratio of refractive indices between medium and
air was ¯xed at 1.4. Also, each single photon was
initialized with its packet (or weight) which is 1 for
the sake of a simple modeling of light-medium
interaction.

Each simulation was executed for 10,000 photons
and the Henyey–Greenstein scattering phase func-
tion was used in which the angular dependence is
described by solely one parameter, g.13 Anisotropy
factor ðgÞ or the mean cosine of scattering angle was
¯xed at 0.8 for all simulations. If a photon enters a
medium under boundary conditions, absorption and
mostly scattering events will be occurred due to
highly scattering in that medium. In di®use regime,
we took the backscattered photons in Fresnel re-
°ection approach due to banana model and then an
expected value of all acquired photons with their
remaining packets (or weights) was calculated.

Fresnel re°ection for surface scattering e®ects of a
medium can be calculated for smooth surfaces using
Fresnel's equation that describes what fraction of
light is re°ected,24

Rf ¼
1

2
x
ða� cÞ2
ðaþ cÞ2 x 1þ ½cðaþ cÞ � 1�2

½cða� cÞ þ 1�2
� �

; ð4Þ

where Rf is the Fresnel re°ection, c ¼ cosð�iÞ, �i is
the angle of incident light, a ¼ n2 þ c2 � 1 and n is
the refractive index of tissue.

3.2. Experimental measurements

We employed three main approaches that the ¯rst
one was setting up an optical assembly for mea-
surements, the latter was MC simulation for for-
ward modeling and ¯nally, we used an ANN
structure to apply inversion procedure. In experi-
mental setup, a 2D image of each single prepared
sample was acquired using CMOS integrated canon
EOS 40D camera that contains interchangeable
digital single lens. Camera was ¯xed at 5� angular
position for oblique capturing. Also, laser light
source at 633 nm wavelength was used to illuminate
the samples and laser power was ¯xed at 420mW.

As it is seen in Fig. 2, we used a mirror that
re°ects laser light which falls perpendicularly onto a
prepared sample to capture re°ected photons
through the camera. After we prepared 30 di®erent
mixture samples (liquid phantoms) that include
20% 500ml clinoleic intravenous lipid emulsion
(CILE) and EB powder dye solvent. In addition,
CILE type lipid emulsion contains 2.25 gram glyc-
erol, 4 gram soybean oil, 1.2 gram egg phospholi-
pids, 4 gram essential fatty acids and 16 gram olive
oil per 100ml. The optical properties for each
sample are determined using transmission-based
USB4000 UV–VIS Ocean Optics type spectrometer
as shown in Fig. 3. Then we input the obtained
optical properties (�a and �sÞ of the samples for
MC simulations to produce di®use re°ectance.
The general structure of this study can be seen in
Fig. 4.

To prepare a mixture sample using EB dye and
CILE type lipid, as shown in Table 1, for example,
we added 100ml deionized water into 0.2ml CILE
without adding EB dye for the ¯rst sample. Hence,
we can easily determine the optical properties of
that CILE using Eq. (5), because we know that
water is a weak absorber in neglecting scattering
factor and its absorption coe±cient at 633 nm

Fig. 1. A °owchart of the MC simulation.
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wavelength is 0.00326 cm�1 from Ref. 19. Moreover,
CILE is also a strong scatterer supposing that it
contains no absorption property.16 Thereby, we
assumed that the lipid is a scatterer and EB dye is
an absorber. For the second sample, we added 1mg
same dye into the ¯rst sample and then, depending
upon the calculated total attenuation coe±cient
(�tÞ in Eq. (5), the absorption coe±cient of the dye
can be extracted.14 Thereby, optical properties of all
phantoms were calculated in this way by adding
method.15

�t ¼
1

logðeÞ
AT

d
; ð5Þ

where d is cuvette thickness, 0.5 cm. AT is trans-
mission-based absorbance and �t is the total at-
tenuation coe±cient. After identifying the optical
properties of all samples (liquid phantoms) using
transmission-based spectrometer, the measured

optical properties were then used as input para-
meters which are absorption coe±cient and scat-
tering coe±cient for MC simulations that output
di®use re°ectance. Next, the following steps for
getting di®use re°ectance values from captured
image have been respectively done in algorithmic
way for 30 di®erent samples image through liquid
phantoms;

As seen in the algorithm mentioned above, ANN
was used to estimate an optical absorption coe±-
cient through corresponding imagebased normal-
ized vector. The main aim of obtaining images is to
estimate an optical property of a biological tissue
imitated liquid phantom using ANN is to make
experimental setup easily without the need of
spectrometer.

Fig. 2. Di®use re°ectance-based experimental setup for surface imaging of the phantoms.

Fig. 3. Transmission-based experimental setup for spectro-
scopic measurements as the results shown in Table 1. (Cuvette
thickness is 0.5 cm).

1. Difference image Sample image - Dark image (Noise)

2. Difference image   Gray level image

3. Gray level image  Smooth image

4. Smooth image Vector that contains 17 pixels and distance 
between two pixels is 0,5 mm.

5. Vector Normalized vector dividing by maximum pixel value
that is 255.

6. Normalized vector Estimated absorption coefficient.

ANNs based estimation of optical parameters

1650027-5

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
7.

10
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
A

Z
H

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
09

/2
3/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Transmission based 
Spectroscopic measurements 

Monte-Carlo Simulation 

Diffuse Reflectance 
(0-8 mm source-detector distance) 

Liquid phantoms 

Diffuse Reflectance based 2D 
imaging measurements 

Surface images of phantoms 

Image Processing

Diffuse Reflectance 
(center line array) 

ANN 

̂  ̂  

ANN 

̂ ̂  

Fig. 4. General °owchart of this study.

Table 1. Liquid Phantoms (in vitro) prepared for getting optical characterizations.

Phantoms VwaterðmlÞ Vlipid(ml) Evans Blue (mg) Absorbance �tðcmÞ�1 �sðcmÞ�1 �aðcmÞ�1

1 100 0.2 0 0.311 1.4322 1.4289 0.00326
2 100 0.2 1 0.673 3.0992 1.4289 1.667
3 100 0.2 2 1.123 5.1716 1.4289 3.7394
4 100 0.2 3 1.534 7.0643 1.4289 5.6321
5 100 0.2 4 1.884 8.6761 1.4289 7.2439
6 100 0.2 5 2.230 10.2695 1.4289 8.8373
7 100 0.2 10 3.115 14.3451 1.4289 12.9129
8 100 0.2 15 3.144 14.4787 1.4289 13.0465
9 100 0.4 0 0.834 3.8407 3.8374 0.00326
10 100 0.4 1 1.346 6.1985 3.8374 2.3578
11 100 0.4 2 1.916 8.8235 3.8374 4.9828
12 100 0.4 3 2.323 10.6978 3.8374 6.8571
13 100 0.4 4 2.777 12.7886 3.8374 8.9479
14 100 0.4 5 2.862 13.1800 3.8374 9.3393
15 100 0.6 0 1.172 5.3972 5.3939 0.00326
16 100 0.6 1 1.756 8.0867 5.3939 2.6895
17 100 0.6 2 2.058 9.4775 5.3939 4.0803
18 100 0.6 3 2.331 10.7347 5.3939 5.3375
19 100 0.6 4 2.705 12.4570 5.3939 7.0598
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4. Results and Discussion

In all measurements, we saw that the scattering coef-
¯cients gradually increased and likewise, absorption
coe±cients of dye increased while adding dye. For ex-
ample, we ¯xed the concentration of lipid and added
dye for the ¯rst eight phantoms as seen in Table 1. In
the same manner, the other phantom groups, such as
9th to 14th, 15th to 22nd and 23rd to 30th, were made
and each group has the ¯xed lipid concentration.
Scattering coe±cients of each group have also a ¯xed
value due to the ¯xed concentration of lipid in each
group and the absorption coe±cients increased for
each phantom, because lipid has a weak absorption
property (because of strong absorption property for
evans blue (EB) dye). On the other hand, MC
simulations were performed for 30 liquid samples that

have di®erent optical properties are extracted from
the transmission-based spectroscopic measurements
in Fig. 3. Moreover, MC simulation results were de-
pendent upon source-detector distance for each pair
of �a and �s. Thereby, while moving detector away
from the source, it is seen that di®use re°ectance
values exponentially decreased. In Fig. 5, we can
easily see that the captured image of 6th phantom
regarding to Table 1 has a saturation region, even
though an optical ¯lter was used to attenuate high
energy of laser light in our experimental setup. The
measured absorption coe±cient of 6th phantom was
8,8373 cm�1 which closely equals to the absorption
coe±cient of human-skin tissue at 633 nm.20,21

Surface image of each phantom were handled and
the results gave us that the extracted features from

Table 1. (Continued )

Phantoms VwaterðmlÞ Vlipid(ml) Evans Blue (mg) Absorbance �tðcmÞ�1 �sðcmÞ�1 �aðcmÞ�1

20 100 0.6 5 2.861 13.1754 5.3939 7.7782
21 100 0.6 10 2.965 13.6544 5.3939 8.2572
22 100 0.6 15 2.967 13.6636 5.3939 8.2664
23 100 1 0 1.553 7.1518 7.1485 0.00326
24 100 1 1 1.772 8.1604 7.1485 1.0086
25 100 1 2 2.519 11.6004 7.1485 4.4486
26 100 1 3 2.785 12.8254 7.1485 5.6736
27 100 1 4 2.896 13.3366 7.1485 6.1848
28 100 1 5 2.940 13.5392 7.1485 6.3874
29 100 1 10 2.963 13.6452 7.1485 6.4934
30 100 1 15 2.963 13.6452 7.1485 6.4934

(a)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
iff

us
e 

re
fle

ct
an

ce
 (

a.
u.

)

Source-detector distance (mm)

(b)

Fig. 5. The related image and corresponding re°ectance spectrum for �s ¼1.4289 cm�1, �a ¼ 8.8373 cm�1. (a) 6th phantom in
Table 1 after applying image processing. (b) Spatially resolved di®use re°ectance versus distance for (a).
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each image contain a normalized pixel intensities
that can be considered as di®use re°ectance de-
creased exponentially for 0–8mm distance. On the
other hand, for inverse modeling of obtained spec-
tra, we modeled an ANN structure as depicted in
Fig. 6. We ¯rstly considered the MC simulation
results for 0–8mm source-detector distance in terms
of conducting neural network for training-testing
process. Next, imagebased optical vectors (or spec-
tra) were used for training-testing the network in
the same manner. However, for the estimation of
optical properties of the liquid phantoms, we took
into account only the estimation of �a while con-
ducting ANN as shown in Figs. 7 and 8. That is

because, each phantom group has a ¯xed �s value,
so the use of ANN structure for these �s values in
Table 1 is not meaningful.

In Fig. 7, it is shown that all MC simulation
outputs were used to estimate �a values by ANN.
During learning mode, Levenberg–Marquardt al-
gorithm was used such that 60% of di®use re°ec-
tance values was for testing and 35% was for
training and ¯nally, we validated with 5% part of all
values using cross-validation technique. Also, the
number of hidden layers was 10. At this point, the
input variables are presented to the network and
estimated output variables were compared with the
desired output (real) variables. The output errors,
which are the di®erences between the estimated
and the desired values, are then used to adjust
the connection weights in the network. Thereby,
mean square error (MSE) was calculated as 0.0019.
In Fig. 8, image-based data that has 30 spectrum
corresponding to the Table 1 were used for the es-
timation of �a and MSE was 1.24e-0.5. In the same
way, Levenberg–Marquardt algorithm was used in
the learning mode and 70% of di®use re°ectance
values was for testing and 25% was for training and
¯nally, we validated with 5% part of all values.
Also, the number of hidden layers was selected to 5.

5. Conclusions

In this paper, we demonstrated ANNs based on the
estimation of tissue optical properties by 5� oblique-
capturing di®use re°ectance. Our study was based on
the two di®erent approaches. The ¯rst one is MC
simulation that relies on ensemble averaging of the

Fig. 6. ANN structure for the estimation of �a and �s.
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Fig. 8. Estimation of �a using image-based di®use re°ectance.
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Fig. 7. Estimation of �a using MC simulation-based di®use
re°ectance.
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data created depending on random sampling from a
probability distribution. The next approach for
obtaining experimental data is that we set up an
optical assembly that contains laser light source at
633 nm wavelength, mirror, liquid phantoms and
CMOS camera. By preparing samples, we measured
absorbance quantities and then decomposed into
scattering and absorption coe±cients by setting up
transmission spectroscopy. Latter, we input the cal-
culated optical parameters for MC code. Using
known optical properties of samples, we acquired
images for 30 di®erent phantoms, respectively
according to Table 1. After applying image proces-
sing, 17 element-vectors that substitutes di®use re-
°ectance values were extracted from each single
image. Finally, we modeled neural networks for
inversion to separate di®use re°ectance into the ab-
sorption and scattering coe±cients. MC simulation
outcomes were assessed in itself through a network
structure and image data were also evaluated in it-
self. At this point, it is seen that the neural network
trained by MC data is more accurate than the neural
network trained by image data for the determination
of optical parameters from the di®use re°ectance. For
our future studies, on behalf of MCmodeling, the use
of multitasking operating system with multicore
Central Processing Unit (CPU) may be an alterna-
tive way in terms of reducing code execution time12

instead of using GPU for acceleration of a source
code. Also, in order to achieve a high performance
MC simulation needs to be implemented in a parallel
computing environment with multi/many core CPU
units. For example, Ziegenhein et al. shows that
CPU-based implementation on a modern worksta-
tion is between 1:25� and 1:95� faster than a well
known GPU implementation of same simulation
method on a NVIDIA Tesla C2050.22 On the other
hand, providing a contribution to the ANN results
due to training/testing, we will be planned to use the
BrainOS17 approach with miniaturized robotics sys-
tem to scan the surface of the human skin in order
to model inner structure of tissue and ¯nally to get
optical parameters using machine learning algo-
rithms in arti¯cial intelligence.
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